Responses of dead forest fuel moisture to climate change
نویسنده
چکیده
Ecohydrol. 2016; 1–10 wileyonlinelibrary.com/jou Abstract Forest fuel moisture is an important factor for wildland fire behavior. Predicting future wildfire trends and controlled burned conditions is essential to effective natural resource management, but the associated effects of forest fuel moisture remain uncertain. This study investigates the responses of dead forest fuel moisture to climate change in the continental United States, one of the global regions with frequent wildfire and controlled burning activities. Moisture content was calculated for dead fuels with 1‐ and 1000‐hr lags (MC1 and MC1000) using the algorithms from the U.S. National Fire Danger Rating System. A set of dynamically downscaled regional climate change scenarios provided by the North American Regional Climate Change Assessment Program was used. The present fuel moisture shows large seasonal variations peaked in winter and spatial variability with dominant meridional change in winter and zonal change in summer. Fuel moisture is projected to decrease overwhelmingly across the United States, mainly caused by temperature increases. The largest MC1 decrease of over 1% mainly occurs in the southwestern United States in spring and southeastern United States in summer, while the largest MC1000 decrease of over 1.5% occurs in the southwestern United States in spring and in the southern Plains and eastern United States in summer. The spatial patterns and seasonal variations of future fuel moisture trends, however, vary considerably with regional climate change scenarios. The drying fuel trends suggest that frequency, size, and intensity of wildfires would increase and prescribed burningwindowswould decrease in the future in the Southwest and the inter‐ mountains during spring and the Rocky Mountains during summer if other fuel conditions remain the same. These results highlight the general vulnerability of semiarid forests to drying fuels trends.
منابع مشابه
Relationship between Dead Trees with Soil Physico-chemical Properties and Earthworm in Mixed Broad-leaved Forest Stand (Case study: Sarcheshmeh Forest, Chaloos)
Dead trees protection, has a key role in structural and biogeochemical processes in forest ecosystems. Some aspects of dead tree dynamics have been carefully studied, but the kind and decay degree of dead trees and forest soil properties have not received enough attention. The aim of this research was to study the effect of a kind and decay degree of dead trees on soil mineral properties in the...
متن کاملPii: S0304-3800(98)00119-7
A spatially explicit forest gap model was developed for the Sierra Nevada, California, and is the first of its kind because it integrates climate, fire and forest pattern. The model simulates a forest stand as a grid of 15×15 m forest plots and simulates the growth of individual trees within each plot. Fuel inputs are generated from each individual tree according to tree size and species. Fuel ...
متن کاملHydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model
Predicting the impact of land cover and climate change on hydrologic responses using modeling tools are essential in understanding the movement and pattern of hydrologic processes within the watershed. The paper provided potential implications of land conversions and climate change scenarios on the hydrologic processes of Muleta watershed using soil and water assessment tool model. Model inputs...
متن کاملResearch of Regional Forest Fire Prediction Method based on Multivariate Linear Regression
In order to achieve the predicted speed, high accuracy, the use of simple purpose, forest fire prediction of the key issues is to choose the main predictors. Forest fire prediction involves many factors, some of which are stable factors such as climate, topography, forest characteristics; and some unstable factors, such as fuel moisture content, meteorological factors, and other sources of igni...
متن کاملDivergence of species responses to climate change
Climate change can have profound impacts on biodiversity and the sustainability of many ecosystems. Various studies have investigated the impacts of climate change, but large-scale, trait-specific impacts are less understood. We analyze abundance data over time for 86 tree species/groups across the eastern United States spanning the last three decades. We show that more tree species have experi...
متن کامل